Skip to main content
Log in

Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the fully developed electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A complete parametric study reveals that the pressure effects are more pronounced at higher values of the channel aspect ratio and smaller values of the flow behavior index. The Poiseuille number is found to be an increasing function of the channel aspect ratio for pressure assisted flow and a decreasing function of this parameter for pressure opposed flow. It is also observed that the Poiseuille number is increased by increasing the zeta potential. Furthermore, the results show that an increase in the flow behavior index results in a lower flow rate ratio, defined to be the ratio of the flow rate to that of a Newtonian fluid at the same conditions. Moreover, whereas the flow rate ratio in the presence of an opposed pressure gradient is smaller than that of a favorable pressure force for shear thinnings, the opposite is true for shear-thickening fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

e :

Proton charge (C)

E x :

Electric field in the axial direction (Vm−1)

f :

Friction factor \({\left[=2\tau_{w,{\rm av}} /\rho u_{\rm HS}^2\right]}\)

F :

Component of body force vector (Nm−3)

F :

Body force vector (Nm−3)

H :

Half channel height (m)

k B :

Boltzmann constant (JK−1)

m :

Flow consistency index (Pasn)

n :

Flow behavior index

n 0 :

Ion density at neutral conditions (m−3)

p :

Pressure (Pa)

Q :

Volumetric flow rate (m3 s−1)

r :

Radial coordinate (m)

R :

Channel radius (m)

Re :

Reynolds number \({\left[=\rho u_{\rm HS}^{2-n} H^{n}/m\right]}\)

t :

Time (s)

T :

Absolute temperature (K)

u :

Axial velocity (ms−1)

u HS :

Helmholtz–Smoluchowski velocity [Eq. (20)]

u PD :

Pressure-driven velocity [Eq. (24)]

u :

Velocity vector (ms−1)

W :

Half channel width (m)

x, y, z :

Coordinates (m)

Z :

Valence number of ions in solution

α:

Channel aspect ratio [ = W/H]

\({\dot{\gamma}}\) :

Magnitude of the strain rate tensor (s−1)

\({{\mathbf{\dot{\gamma}}}}\) :

Strain rate tensor (s−1)

Γ:

Velocity scale ratio [Eq. (23)]

\({\varepsilon }\) :

Fluid permittivity (CV−1 m −1)

ζ :

Zeta potential (V)

K :

Dimensionless Debye–Hückel parameter \({\left[=H/\lambda_{\rm D}\right]}\)

K′:

Dimensionless Debye–Hückel parameter for circular geometry \({\left[=R/\lambda_{\rm D}\right]}\)

λ D :

Debye length (m)

μ :

Effective viscosity (Pas)

ρ :

Fluid density (kgm−3)

ρ e :

Net electric charge density (Cm−3)

τ :

Stress tensor component (Pa)

\({\boldsymbol{\tau}}\) :

Stress tensor (Pa)

φ :

Electrostatic potential (V)

Φ :

Externally imposed electrostatic potential (V)

ψ :

EDL potential (V)

av:

Average

c :

Circular

m :

Mean

r :

Rectangular

w :

Wall

0:

Reference

*:

Dimensionless variable

References

  1. Lemoff A.V., Lee A.P.: AC magnetohydrodynamic micropump. Sens. Actuators B: Chem. 63(3), 178–185 (2000)

    Article  Google Scholar 

  2. van Lintel H.T.G., van De Pol F.C.M., Bouwstra S.: A piezoelectric micropump based on micromachining of silicon. Sens. Actuators 15(2), 153–167 (1988)

    Article  Google Scholar 

  3. Richter A., Plettner A., Hofmann K.A., Sandmaier H.: A micromachined electrohydrodynamic (EHD) pump. Sens. Actuators: A. Phys. 29(2), 159–168 (1991)

    Article  Google Scholar 

  4. Arulanandam S., Li D.: Liquid transport in rectangular microchannels by electroosmotic pumping. Colloids Surf. A: Physicochem. Eng. Aspects 161(1), 89–102 (2000)

    Article  Google Scholar 

  5. Reuss F.F.: Charge-induced flow. Proc. Imp. Soc. Naturalists Moscow 3, 327–344 (1809)

    Google Scholar 

  6. Burgreen D., Nakache F.R.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68(5), 1084–1091 (1964)

    Article  Google Scholar 

  7. Rice C.L., Whitehead R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69(11), 4017–4024 (1965)

    Article  Google Scholar 

  8. Levine S., Marriott J.R., Neale G., Epstein N.: Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interface Sci. 52(1), 136–149 (1975)

    Article  Google Scholar 

  9. Kang Y., Yang C., Huang X.: Electroosmotic flow in a capillary annulus with high zeta potentials. J. Colloid Interface Sci. 253(2), 285–294 (2002)

    Article  Google Scholar 

  10. Yang D.: Analytical solution of mixed electroosmotic and pressure-driven flow in rectangular microchannels. Key Eng. Mater. 483, 679–683 (2011)

    Article  Google Scholar 

  11. Wang C.Y., Liu Y.H., Chang C.C.: Analytical solution of electro-osmotic flow in a semicircular microchannel. Phys. Fluids 20(6), 063105 (2008)

    Article  Google Scholar 

  12. Das S., Chakraborty S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Analytica Chimica Acta 559(1), 15–24 (2006)

    Article  MathSciNet  Google Scholar 

  13. Zhao C., Zholkovskij E., Masliyah J., Yang C.: Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J. Colloid Interface Sci. 326(2), 503–510 (2008)

    Article  Google Scholar 

  14. Zhao C., Yang C.: Nonlinear Smoluchowski velocity for electroosmosis of power-law fluids over a surface with arbitrary zeta potentials. Electrophoresis 31(5), 973–979 (2010)

    Article  Google Scholar 

  15. Zhao C., Yang C.: Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Electrophoresis 34(5), 662–667 (2013)

    Article  Google Scholar 

  16. Vasu N., De S.: Electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf. A: Physicochem. Eng. Aspects 368(1–3), 44–52 (2010)

    Article  Google Scholar 

  17. Bandopadhyay A., Chakraborty S.: Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements. Langmuir 27(19), 12243–12252 (2011)

    Article  Google Scholar 

  18. Deng S.Y., Jian Y.J., Bi Y.H., Chang L., Wang H.J., Liu Q.S.: Unsteady electroosmotic flow of power-law fluid in a rectangular microchannel. Mech. Res. Commun. 39(1), 9–14 (2012)

    Article  Google Scholar 

  19. Vasu N., De S.: Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel. Int. J. Eng. Sci. 48(11), 1641–1658 (2010)

    Article  Google Scholar 

  20. Bharti R.P., Harvie D.J.E., Davidson M.R.: Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel. Int. J. Heat Fluid Flow 30(4), 804–811 (2009)

    Article  Google Scholar 

  21. Park H.M., Lee W.M.: Helmholtz–Smoluchowski velocity for viscoelastic electroosmotic flows. J. Colloid Interface Sci. 317(2), 631–636 (2008)

    Article  Google Scholar 

  22. Park H.M., Lee W.M.: Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Lab Chip-Miniaturisation Chem. Biol. 8(7), 1163–1170 (2008)

    Article  Google Scholar 

  23. Dhinakaran S., Afonso A.M., Alves M.A., Pinho F.T.: Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan–Thien–Tanner model. J. Colloid Interface Sci. 344(2), 513–520 (2010)

    Article  Google Scholar 

  24. Afonso A.M., Alves M.A., Pinho F.T.: Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech. 159(1–3), 50–63 (2009)

    Article  MATH  Google Scholar 

  25. Afonso A.M., Alves M.A., Pinho F.T.: Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials. J. Eng. Math. 71(1), 15–30 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Babaie A., Sadeghi A., Saidi M.H.: Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel. J. Non-Newtonian Fluid Mech. 166(14–15), 792–798 (2011)

    Article  MATH  Google Scholar 

  27. Babaie A., Saidi M.H., Sadeghi A.: Electroosmotic flow of power-law fluids with temperature dependent properties. J. Non-Newtonian Fluid Mech. 185–186, 49–57 (2012)

    Article  Google Scholar 

  28. Sousa J.J., Afonso A.M., Pinho F.T., Alves M.A.: Effect of the skimming layer on electro-osmotic-Poiseuille flows of viscoelastic fluids. Microfluid. Nanofluidics 10(1), 107–122 (2011)

    Article  Google Scholar 

  29. Vakili M.A., Sadeghi A., Saidi M.H., Mozafari A.A.: Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels. Colloids Surf. A: Physicochem. Eng. Aspects 414, 440–456 (2012)

    Article  Google Scholar 

  30. Probstein R.F.: Physicochemical Hydrodynamics. 2nd edn. Wiley, New York (1994)

    Book  Google Scholar 

  31. Yang C., Li D., Masliyah J.H.: Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. Int. J. Heat Mass Transf. 41(24), 4229–4249 (1998)

    Article  MATH  Google Scholar 

  32. Deen W.M.: Analysis of Transport Phenomena. Oxford University Press, New York (1998)

    Google Scholar 

  33. Dutta D.: Electroosmotic transport through rectangular channels with small zeta potentials. J. Colloid Interface Sci. 315(2), 740–746 (2007)

    Article  Google Scholar 

  34. Moghadam, A.J.: Electrokinetic-driven flow and heat transfer of a non-newtonian fluid in a circular microchannel. J. Heat Transf. 135(2), 021705 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Sadeghi.

Additional information

Communicated by Oleg Zikanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakili, M.A., Sadeghi, A. & Saidi, M.H. Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels. Theor. Comput. Fluid Dyn. 28, 409–426 (2014). https://doi.org/10.1007/s00162-014-0325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-014-0325-6

Keywords

Navigation